

Value-of-Information Analysis for Patient-Centered Outcomes Research Prioritization

Evan R. Myers, MD, MPH, Amanda J. McBroom, PhD,
Lan Shen, MD, Rachael E. Posey, MSLS,
Rebecca Gray, DPhil, Gillian D. Sanders, PhD

Duke Evidence-Based Practice Center

VALUE OF INFORMATION: BASIC CONCEPTS

Value-of-Information (VOI) Analysis

- “Should I make a decision based on the information I currently have, or should I collect more data before I decide?”
- VOI is Bayesian approach to this question
 - Construct probabilistic decision model
 - Estimate both
 - Optimal decision given current information
 - Likelihood of that decision being wrong, along with consequences of wrong decision
 - If cost of obtaining more information less than costs/consequences of wrong decision, than collecting more data worthwhile

VOI – Example

- Two treatments, A and B, for fatal disease
- Costs of treatment equivalent, only cost differences due to complications
- Data on effectiveness from small studies (A, n=50; B, n=100)

Parameter	Treatment A (95% CI)	Treatment B (95% CI)
Cure rate	94% (86.0 to 98.6%)	90% (83.5 to 95.0%)
Life expectancy if cured	20 years	
Life expectancy if treatment fails	5 years	
Costs of managing treatment failure	\$50,000	
Overall complication rate	20% (10.0 to 27.5%)	5% (2.1 to 10.1%)
Mortality rate after complication	10% (8.2 to 12.0%)	
Cost of complication	\$10,000	
Costs associated with fatal complication	\$50,000	

Expected Value with Current Information

- Estimates based on mean values (not incorporating uncertainty)
- Treatment A has better life expectancy but higher costs
 - Incremental cost-effectiveness \$692
 - A is “optimal” if willingness-to-pay (WTP) for a QALY up to \$692

Outcome	Treatment A	Treatment B
Mean life expectancy	18.72 years	18.40 years
Mean costs	\$10,940	\$10,725
Mortality from complications of treatment	2.0%	0.5%

Net Benefits

- Net benefits incorporate both incremental cost-effectiveness and willingness-to-pay (WTP) in single measure
 - Net monetary benefits
$$(WTP * Net \text{ quality-adjusted life expectancy}) - Net \text{ costs}$$
 - Net health benefits
$$Net \text{ quality-adjusted life expectancy} - (Net \text{ costs}/WTP)$$
- ~~Optimal~~ “Optimal” option is one with highest net benefit at any given WTP

Expected Value given Perfect Information (WTP=\$750)

- Perform repeated simulations, drawing from distributions
- Calculate “optimal” choice for each simulation
- On average, B is optimal at WTP of \$750

Simulation Number	Net Benefits Treatment A	Net Benefits Treatment B	Maximum Net Benefits	Preferred Strategy	Opportunity Cost
1	\$4,180	\$4,306	\$4,306	B	\$0
2	\$2,273	\$2,415	\$2,415	B	\$0
3	\$7,095	\$4,507	\$7,095	A	\$2,588
4	\$3,186	\$4,017	\$4,017	B	\$0
5	\$3,504	\$3,433	\$3,504	A	\$72
6	\$5,698	\$6,740	\$6,740	B	\$0
7	\$4,762	\$3,718	\$4,762	A	\$1,044
8	\$3,960	\$1,919	\$3,960	A	\$2,041
9	\$5,071	\$5,964	\$5,964	B	\$0
10	\$1,904	\$5,123	\$5,123	B	\$0
Expected value (mean of simulations 1–10)	\$4,163	\$4,214	\$4,789		\$575

Expected Value given Perfect Information (WTP=\$750)

- In 4 individual simulations, A is optimal
- If we knew outcome of each simulation, would pick optimal choice each time

Simulation Number	Net Benefits Treatment A	Net Benefits Treatment B	Maximum Net Benefits	Preferred Strategy	Opportunity Cost
1	\$4,180	\$4,306	\$4,306	B	\$0
2	\$2,273	\$2,415	\$2,415	B	\$0
3	\$7,095	\$4,507	\$7,095	A	\$2,588
4	\$3,186	\$4,017	\$4,017	B	\$0
5	\$3,504	\$3,433	\$3,504	A	\$72
6	\$5,698	\$6,740	\$6,740	B	\$0
7	\$4,762	\$3,718	\$4,762	A	\$1,044
8	\$3,960	\$1,919	\$3,960	A	\$2,041
9	\$5,071	\$5,964	\$5,964	B	\$0
10	\$1,904	\$5,123	\$5,123	B	\$0
Expected value (mean of simulations 1-10)	\$4,163	\$4,214	\$4,789		\$575

Expected Value given Perfect Information (WTP=\$750)

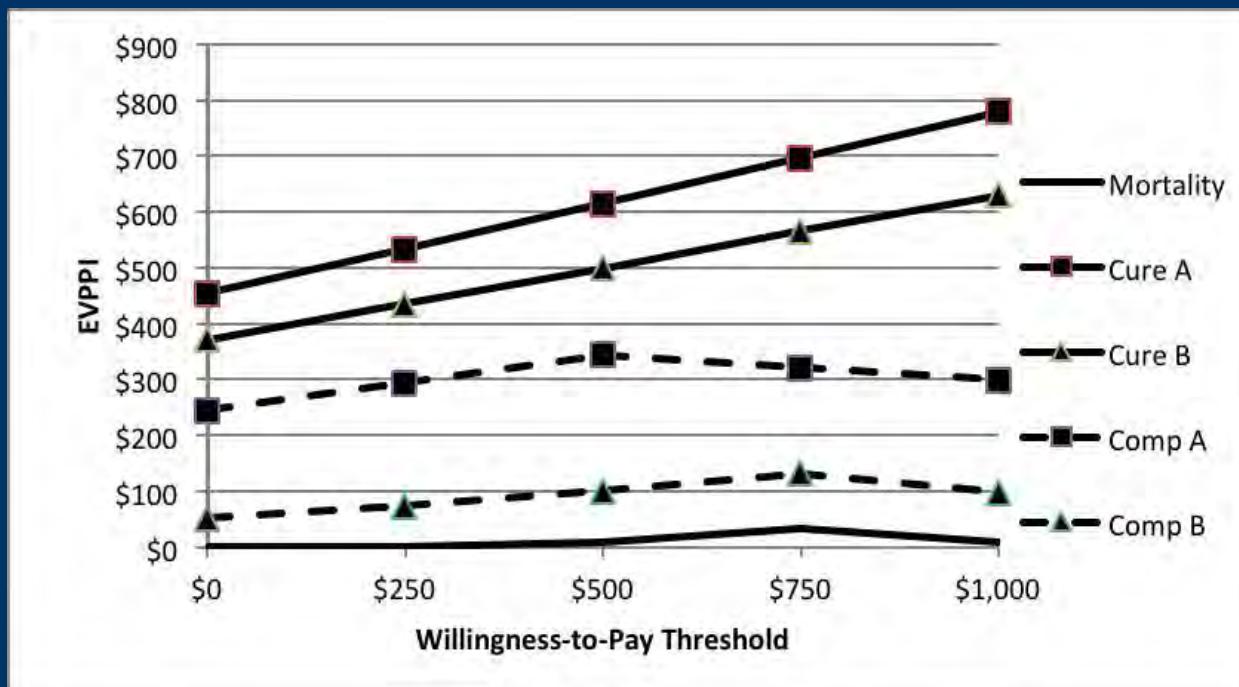
- Expected value OF perfect information is difference between expected value based on highest mean and value if we knew results of each simulation (\$575)

Simulation Number	Net Benefits Treatment A	Net Benefits Treatment B	Maximum Net Benefits	Preferred Strategy	Opportunity Cost
1	\$4,180	\$4,306	\$4,306	B	\$0
2	\$2,273	\$2,415	\$2,415	B	\$0
3	\$7,095	\$4,507	\$7,095	A	\$2,588
4	\$3,186	\$4,017	\$4,017	B	\$0
5	\$3,504	\$3,433	\$3,504	A	\$72
6	\$5,698	\$6,740	\$6,740	B	\$0
7	\$4,762	\$3,718	\$4,762	A	\$1,044
8	\$3,960	\$1,919	\$3,960	A	\$2,041
9	\$5,071	\$5,964	\$5,964	B	\$0
10	\$1,904	\$5,123	\$5,123	B	\$0
Expected value (mean of simulations 1-10)	\$4,163	\$4,214	\$4,789		\$575

Expected Value given Perfect Information (WTP=\$750)

Simulation Number	Net Benefits Treatment A	Net Benefits Treatment B	Maximum Net Benefits	Preferred Strategy	Opportunity Cost
1	\$4,180	\$4,306	\$4,306	B	\$0
2	\$2,273	\$2,415	\$2,415	B	\$0
3	\$7,095	\$4,507	\$7,095	A	\$2,588
4	\$3,186	\$4,017	\$4,017	B	\$0
5	\$3,504	\$3,433	\$3,504	A	\$72
6	\$5,698	\$6,740	\$6,740	B	\$0
7	\$4,762	\$3,718	\$4,762	A	\$1,044
8	\$3,960	\$1,919	\$3,960	A	\$2,041
9	\$5,071	\$5,964	\$5,964	B	\$0
10	\$1,904	\$5,123	\$5,123	B	\$0
Expected value (mean of simulations 1-10)	\$4,163	\$4,214	\$4,789		\$575

- Alternatively, opportunity cost of making wrong decision (\$575)


Expected Value of Perfect Information (EVPI)

- Results vary in simulation because of uncertainty around parameter estimates (e.g., wide confidence intervals)
- Reducing uncertainty (e.g., by narrowing confidence intervals with larger study) increases probability of “optimal” decision
- If cost of reducing uncertainty is less than expected value of perfect information, then further research is worthwhile

Expected Value of Partial Perfect Information (EVPI)

- Can estimate impact of individual parameters
- Higher the EVPI, greater contribution to uncertainty
- Helps prioritize specific research areas

CHALLENGES TO VOI FOR PATIENT-CENTERED OUTCOMES RESEARCH

Information vs. Implementation

- Implicit assumption behind VOI in health care: resolving uncertainty about outcomes will lead to greater use of effective treatments
 - Multiple examples of persistent use of ineffective or inefficient interventions despite evidence, or resistance to recommendations based on new evidence
 - .*Cancer screening*
 - .*Treatment of low back pain*
- If further research reduces uncertainty but does not result in changes in patient and/or provider behavior, then value of research is overestimated

Information vs. Implementation

- Can include assumptions/estimates about patient and provider responses to new evidence in model
 - Estimate “value of implementation” along with value of information
 - Research into understanding issues behind variable patient/provider use, or methods for improving adherence, may have higher priority than studies of clinical effectiveness

Addressing Heterogeneity

- “Classic” application of VOI in health care in UK:
 - Perform VOI analysis
 - Estimate per-patient EVPI
 - Estimate population-level EVPI by multiplying
 - .*Estimated number of patients eligible for intervention*
 - .*Expected time horizon for use of intervention*
 - .*Discount rate*
- Population-level EVPI sets upper bound of reasonable research budget

Addressing Heterogeneity

- Heterogeneity in probabilities of outcomes
 - Per-patient EVPI may differ within subgroups (e.g., fibroids and African-American women)
 - Depending on relative sizes of subgroups, overall EVPI might be lower
- Heterogeneity in patient preferences for outcomes
 - Population-level preference distributions may underestimate values for individual subjects
 - May be value to individualizing care (e.g., early stage prostate cancer)
- Heterogeneity in patient preferences for other attributes of process of care
 - May be difficult to capture with QALYs

Limitations of QALYs for PCOR

- Standard methods for eliciting utilities for QALYs may not be appropriate for many situations
 - Conditions affecting infants and children
 - Conditions where there are outcomes for more than one patient
 - .Obstetrics*
 - .Infertility*
 - Parental utilities for chronic disability resulting from preterm birth approximately 0.95, permanent infertility 0.7
 - Decisions where outcomes are similar but other attributes of the process of care are important
 - .Obstetrics*
 - .End-of-life care*
 - .Choice of surgical approach*

Alternatives to Cost-Effectiveness

- Statutory limitations on use of cost-effectiveness and QALYs
- QALYs may not always be best option anyway

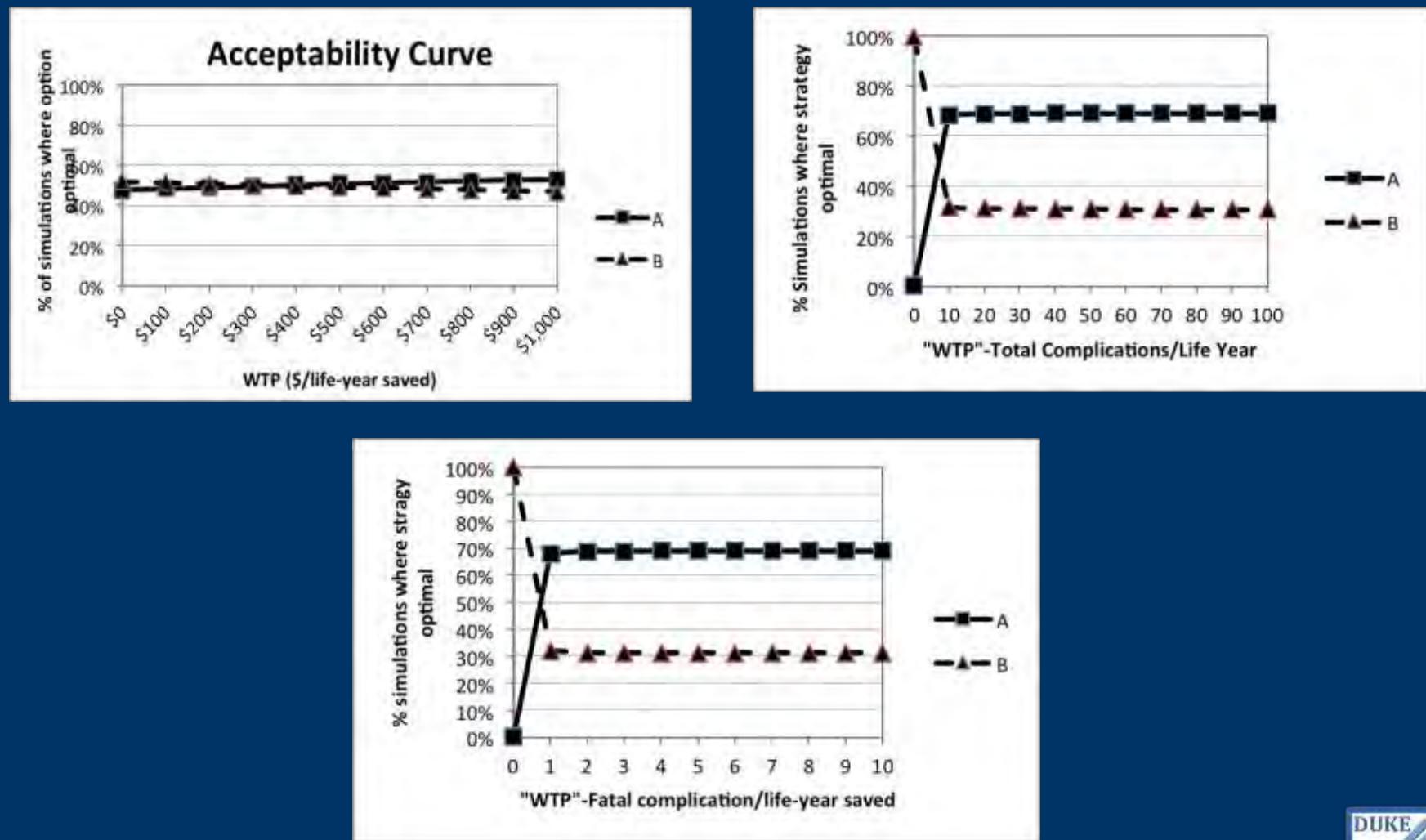
Alternatives to Cost-effectiveness Framework

■ Cost-benefit analysis

- Experience in environmental and regulatory economics (including at federal level)
- Alternative methods for capturing patient preferences

.Revealed preferences (e.g., travel costs for appointments)

.Stated preferences


- Discrete choice
 - Able to incorporate preferences for both outcomes and process
 - Can generate estimates of population distribution of preferences

Alternatives to Cost-effectiveness Framework

- “Harm/benefit” or other multicriteria decision analysis
 - Can consider adverse outcomes as “costs”
 - Can express trade-offs between these “costs” and outcomes in same way one expresses trade-offs between costs and effectiveness
 - Can illustrate uncertainty at different thresholds of “willingness-to-pay”
 - Might be particularly useful for developing guidelines, especially in conjunction with formal framework such as GRADE

Other Challenges

- Resources required to develop models
 - Limited expertise in both disease modeling and VOI—almost 40% of all papers identified in lit search from one of 3 groups
- Lack of stakeholder familiarity with concepts
- Lack of published experience on actual use of VOI for research prioritization
- Lack of coordination within US funding agencies about role, scope of VOI

